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We shall consider the domains of possible and impossible oscillatory motions of a triaxiaf 
satellite in circular orbit in a gravitational field. The concept of an optimally stable satel- 
lite will be introduced. We shall show that such a satellite must have moments of inertia in 

the ratios 1.75:1:0.75. 
The.positions of the principal central axes of inertia x~z*~ of the satellite relative to 

the orbital tetrahedron 7, n, I’ can be defined by means of the matrix of direction cosines 

X1 xt % 

t a11 ali2 aI3 
n aa1 a28 a28 
r %l %a a88 

We assume that the orbit is.circular, In this case 7 points in the direction of motion al- 
ong the tangent to the orbit, II is directed along the normal to the orbital plane, and r along 
the radius vector of the orbit, Let A,, A Ip A, be the principal central moments of inertia 

corresponding to the axes x1, xP x3 ; o is the angular velocity of the center of mass of the 
satellite in,orbit; pl, pz, pg are the components of the relative angular rotational velocity 

of the satellite along the axes x1, zz, x3. Then (as was shown in [l]) there exists the first 
integral of the equations of motion 

‘!a f4~1* 9 &Q + --%A*) + % ma &A, - As) asf -0 (A, - A&w* 1 4 
+ ‘LA aa [(A, - A,) ad Q (A, - A3 a?’ 1 =J ho (1) 

and the equilibrium position 

pl = Pa - Ps = 0, uU=~a=aa,=l, ara=a18=---_aaL5;a88=asa=a*~=C 

is stable in the Liapunov sense if 

As>A:>Ar (2) 

In other words, in the equilibrium position the major axis of the inertial ellipsoid is direc- 
ted along the radius vector and the minor axis aIong the normal to the orbital plane. Under 
condition (2) we can use (1) to construct the domains of possible and impossible satellite 
motions. 

Since (1) is positively defined, we have the inequalities 

3 [(A, -.A3 %I” + (Aa - A,) asss] \< 24 / oP (31 

6% - 4 a,? -+ (4 - A,) %a* < 2h, 1 m* (4) 

3 (A, - 4 %I’ + (4 - A,) asIB < 2h, / CD* (5) 

Let. US consider (31, for example. Since a 31, a 32, a 33 are the direction cosines of the 
radius vector c in the system it, x2, x3, it follows that inequality (3) together with the Eq. 

aara + asBa -3; ciasa = i (61 

lTO7 
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yields the domains of possible motion of the radius vector r on unit sphere (6). In this case 

the trihedron asI, ~~2, as3 is associated with the trihedron xl, x2, nJ which coincides 

with it. Since cylindrical domains (3) describe curves symmetrical to the meridian CL. 31. 2 + 

+ a32 2= 1 on sphere (61, it is sufficient to consider the projections of the domains of mo- 

tion on the plane CL 31, U 32; the shape, dimensions and disposition of domains (3) on this 

plane fully characterize the shape, dimensions, au d disposition of domains (3) on sphere 
(6). In this plane model the point (a 32 = 1, u 31 = 0) is associated with the position of r 
along the minor axis x2 of the inertial ellipsoid; the point (a,,= 0, usI = 1) is associated 

with the position oft along the axis x1 (the mean axis of the ellipsoid); finally, the point 

(a 32 = 0, a31 = 0) is associated with the position of r along the major axis xg of the iner- 

tial ellipsoid of the satellite. Transformation of inequality (3) into 811 equation yields the 

boundaries of the libration domains. 

Similarly, Expression (4) together with U2.2 + U23 2 = 1 yields the domains of motion 
of the normal n to the orbital plane relative to the principal central inertial axes x1, x2, xQ 

of the satellite. Here the point (CL,, = 1, a2, = 0) is associated with the coincidence of n 
with z 3;the point (a,, = 0,~~~ = 1) with the coincidence of !I with x 1; the point (a23 = 
=a 21 = 0) with the coincidence of n with x2. 

Finally, (5) together with u 212 + a,31 2 = 1 yields the domains of motion of the mean 

orbital system 7, n, r, The point (a - 1, CL = 0) is associated with the coincidence of 
x1 with n, the point (a,, = 0, a 31 = 211) with3& e coincidence of x1 with r, and the point 

(a2, = 0, u31 = 0) with the coincidence of x1 with 7. 

Simultaneous consideration of the above relations yields a sufficiently detailed notion 
of the boundaries of libration of an asymmetrical satellite. These boundaries can 

sented as ellipses inscribed in unit circles, 

:s ; E$ =I, c&+~$=i, a,* =a,'sF, b,a=b,‘W 

6 
a,‘ak31i-- b,‘8 = --_.!.-* &=$, As 2hO 

3(6-e) 
e=z_--, h’=- 

Al Alo% 

be repre- 

(71 

(8) 

We note that by the physical nature of the case and by virtue of (2) it is always the case 
that 

&- e> 1, e < 1, S>l GOI 

For various values of fr, (and fixed A,, A,, A,) ellipses (7). (8) and (9) have various di- 

mensions (Fig. 1). The domain of possible motion is the domain “inside” the corresponding 
kllipse (i.e. the domain containing the origin of coordinates). When (2) is fulfilled it is al- 
waysthecaseihatar>b,,a,>b,,anda,>bxifA2-AA>3(Ar-A3),anda,<b,if 

A,- A, < 3(A, - A,). 

The dimensions of the domains for fixed A,, A,, A 3 are determined by the value of h,. 
For example, if these are certain initial deviations in the orbital plane which determine the 

value of ho * and if the initial deviations from plane oscillations are arbitrarily small, the 
domain of possible transverse oscillations is still finite and is determined by the indicated 

value of ho*, 
For fixed h, the shapes and dimensions of the domains of possible motion are determined 
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by the ratios of the moments of inertia. 

Let us hold h’ fixed and consider some examples. 
Lx amp1 e 1. Let 6= 1.1, E = 0.2; then ar’= 0.68, b,‘= 0.64, a,,‘= 3.32, b,‘= 1.11. 

ax’= orI ’ b,‘=a,‘. 
Figure 1 a shows the domains of possible motion for this case (the shaded areas corres- 

pond to the value (II’) t/2= 0.1). We note that the maximal possible deviations of the angles 
(xgr), Oc2n), and (x TV) are given by the relations 

1 sin (zsr) 1 = a,’ 1/T;;; 1 sin (xzn) 1 = a,’ m 

1 sin (zlt) 1 = or’ l/h7, if n,-Al>3(A;-&), Isin(zlz)l =a, l/P 

if As--A1<3(&41-& 

The angle (z3r) characterizes pitching motion, 

P n X 

Fig. 1 

and the angles (z2n) and (x,‘~) the lat- 

eral oscillations. From Example 1 (Fig. 

la) we see that quite moderate pitching 
oscillations can be accompanied by very 
considerabie lateral oscillations. In fact, 
in this case we have a ,,‘/a r‘, = 4,899, 
do that if the maximum pitch deviation 
is (x3r) = 5”, the roll deviation can reach 
219 

The existence of a sufficiently broad 
domain of possible motion does not mean 
that the oscillations will necessarily 
build up to the extreme limits of this do- 
main. All we are saying is that such 
buildup is possible with certain relations 
of the parameters. The actual oscillation 
buildup mechanism has to do with the 
commensurability of the spatial oscilla- 
tions of the satellite. Kane [2] discerned 
the possibility of such buildup of trans- 
verse oscillations by numerical computa- 
tions; Breakwell and Pringle [ 31 investi- 
gated these resonance effects by asymp 
totic methods. 

Thus, domains of possible motion 
which are almost equal in size (for the 
same value of h’) can be associated with 

both small oscillations lying deep inside the domain, and (in the case of a resonance rela- 
tionship among the moments of inertial) with oscillations extending to the domain boundaries. 

The existence of such resonance does not conflict with the previously proved (11 Liapu- 
nov stability relative to the equilibrium position of the satellite: in fact, in both the reson- 
ance and nonresonance cases we can always choose an h’so small that the oscillation amp- 
litudes do not exceed a specified value. 

Example 2, a= 1.9, E = 0.9; then a,‘= 2.52, b,‘= 0.795, an’= 1.45, b,‘= 1.38, 

ax’= ar’, b,‘= a,,: 
In contrast to the above case, the moderate oscillations about the normal to the orbital 

plane are accompanied by more marked pitching oscillations and oscillations about the tan- 
gent to the orbit (ar’/on’= 1.75; Fig. lb). 

We can now ask whether it is possible to choose moments of inertia of the satellite such 
that some uniform “moderateness” of all the satellite oscillations is guarauteed for a fixed 
h’. Let us call a satellite with the moment of inertia ratios e *, a* “optimally stable” if 
for a fixed value of the dimensionless energy constant Ar, ’ these ratios minimize the maximal 
dimensions of the domain of possible motion. Since the maximal dimensions of the domain 
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of possible motion are determined[l] either by ur’or by us’, the problem reduces to finding 

min man (a,‘, au’) 
a,6 

Let us consider domain (IO) (Fig. 2) on the plane e, 8. The straight line 6+ 3s = 4 
divides this domain into two parts. Above this line we have ar’2> u,‘2 and we must mini- 

mize ar’ as the larger of the two quantities a,‘and a,‘. Below the line we have a,“‘> o _‘2 

‘+O 

Fig. 2 

of inertia in the ratios 

and the q&tity to’be minimized is a,‘. The stiaight _ 
lines u,‘~ = aso’* = const are equivalent to some strai- 

ght lines 6= const, and the values of a,‘2 diminish mon- 
otonously from 00 as 6 increases from 1. The smallest 
value of o,‘~ in the subdomain 6 c 3s 6 4 is attained at 

the intersection of tbe boundary 8+ 38 = 4 of this subdo- 
main with the boundary 6 - s = 1 of domain (IO). Now let 

us consider the subdomain 8 + 38 >/ 4. Here the quantity 
to be minimized i s or’. The isolines a,‘” = are’2 = const 

are the bunch of straight lines 6+ 3q,‘*e = 3a,o‘2 pas- 

sing through the points 6 = 0, E = I, 8 = 30~‘~~ s = 0, 

so that the minimal value of u,‘~ in the subdomain 6 + 

+ 3’e 3 4 corresponds once again to the intersection of 
the boundary ri+ 30. = 4 of this subdomain with the boun- 
dary 8 - e = 1 of domain (10). This intersection is asso- 
ciated with the values e = 0.75, 8= 1.75. 

Thus, the optimally stable satellite has its moments 

Aa*: AI*: A** = 1.75 : 1 : 0.75 (11) 

Exa,mpIe 3. ymafns of possible motion of optima$y stable satellite (II). In this 
case o = 1.526, b, = 0.7513, b 

Rat& of moments of inertia ‘c 

‘= 1.32, 6 ‘= as = a 5 us’ (Fig. 1~). 
11) are poa%ble only iith a degenerate disk-shaped satel- 

lite. In fact, one oupbt to consider a real satellite with moment ratios close to (11). 
We note likewise that on an elliptical orbit the boundary 6 - e = 1 is the resonance 

carve of parametric resonance in the lateral oscillations [4], so that point (11) is a reson- 
ance point. It also means that we must take not (Il), hut some relation (from the nonreson- 
ance zone) which is close to it. 

It is noteworthy that the above resonance curve has a second branch not indicated in 
[4 and 51 but determined in [3]. No other curve of those found in [4, 6 and 31 passes through 

point (11). 
In conclusion we note that small oscillations in a circular orbit of a satellite with para- 

meters (11) are given by the system of Eqs. (with dimensionless time) 

a”” + a!,cc” = 0, a”’ + a’ = 0, y”’ + 4y’ = 0 (12) 

The pitching, rolling, and yawing oscillations (a”, a’, aud y ‘, respectively) are mutual- 
ly independent (the system splits, as everywhere, along the straight line 6 - e = I). Inte- 

gration of the system is The periods of the pitching, rolling and yawing oscilla- 

tions are respectively equal to one, and one half of the period of revolution of the 

sateilite center of mass. 
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